Diagonal Hessian Approximation for Limited Memory Quasi-Newton via Variational Principle

نویسندگان

  • Siti Mahani Marjugi
  • Wah June Leong
چکیده

This paper proposes some diagonal matrices that approximate the (inverse) Hessian by parts using the variational principle that is analogous to the one employed in constructing quasi-Newton updates. The way we derive our approximations is inspired by the least change secant updating approach, in which we let the diagonal approximation be the sum of two diagonal matrices where the first diagonal matrix carries information of the local Hessian, while the second diagonal matrix is chosen so as to induce positive definiteness of the diagonal approximation at a whole. Some numerical results are also presented to illustrate the effectiveness of our approximating matrices when incorporated within the L-BFGS algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable-storage quasi-Newton operators as inverse forecast/analysis error covariance matrices in variational data assimilation

Two approximations of the Hessian matrix as limited-memory operators are built from the limited-memoryBFGS inverse Hessian approximationprovided by the minimization code, in view of the speci cation of the inverse analysis/forecast error covariance matrix in variational data assimilation. Some numerical experiments and theoretical considerations lead to reject the limited-memory DFP Hessian app...

متن کامل

Limited-Memory Reduced-Hessian Methods for Large-Scale Unconstrained Optimization

Limited-memory BFGS quasi-Newton methods approximate the Hessian matrix of second derivatives by the sum of a diagonal matrix and a fixed number of rank-one matrices. These methods are particularly effective for large problems in which the approximate Hessian cannot be stored explicitly. It can be shown that the conventional BFGS method accumulates approximate curvature in a sequence of expandi...

متن کامل

A class of diagonal preconditioners for limited memory BFGS method

A major weakness of the limited memory BFGS (LBFGS) method is that it may converge very slowly on ill-conditioned problems when the identity matrix is used for initialization. Very often, the LBFGS method can adopt a preconditioner on the identity matrix to speed up the convergence. For this purpose, we propose a class of diagonal preconditioners to boost the performance of the LBFGS method. In...

متن کامل

Practical inexact proximal quasi-Newton method with global complexity analysis

Recently several methods were proposed for sparse optimization which make careful use of second-order information [11, 34, 20, 4] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here w...

متن کامل

Limited-memory projective variable metric methods for unconstrained minimization

A new family of limited-memory variable metric or quasi-Newton methods for unconstrained minimization is given. The methods are based on a positive definite inverse Hessian approximation in the form of the sum of identity matrix and two low rank matrices, obtained by the standard scaled Broyden class update. To reduce the rank of matrices, various projections are used. Numerical experience is e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013